Review

Paraquat exposure as an etiological factor of Parkinson’s disease

R.J. Dinis-Oliveira a,*, F. Remião a, H. Carmo a, J.A. Duarte b, A. Sánchez Navarro c, M.L. Bastos a, F. Carvalho a,*

a REQUIMTE, Department of Toxicology, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal
b Department of Sport Biology, Faculty of Sport Sciences, University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
c Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Avda. Campo Charro s/n 37007, Salamanca, Spain

Received 14 February 2006; accepted 9 May 2006
Available online 3 July 2006

Abstract

Parkinson’s disease (PD) is a multifactorial chronic progressive neurodegenerative disease influenced by age, and by genetic and environmental factors. The role of genetic predisposition in PD has been increasingly acknowledged and a number of relevant genes have been identified (e.g., genes encoding α-synuclein, parkin, and dardarin), while the search for environmental factors that influence the pathogenesis of PD has only recently begun to escalate. In recent years, the investigation on paraquat (PQ) toxicity has suggested that this herbicide might be an environmental factor contributing to this neurodegenerative disorder. Although the biochemical mechanism through which PQ causes neurodegeneration in PD is not yet fully understood, PQ-induced lipid peroxidation and consequent cell death of dopaminergic neurons can be responsible for the onset of the Parkinsonian syndrome, thus indicating that this herbicide may induce PD or influence its natural course. PQ has also been recently considered as an eligible candidate for inducing the Parkinsonian syndrome in laboratory animals, and can therefore constitute an alternative tool in suitable animal models for the study of PD. In the present review, the recent evidences linking PQ exposure with PD development are discussed, with the aim of encouraging new perspectives and further investigation on the involvement of environmental agents in PD.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Parkinson’s disease; Environmental factors; Paraquat; Neurotoxicity; Animal models

Contents

1. Introduction .. 1111
 1.1. The pathology of Parkinson’s disease .. 1111
 1.2. Etiology of Parkinson’s disease ... 1111
2. Paraquat toxicity ... 1112
 2.1. Paraquat toxicity mechanism ... 1112
 2.2. Recent studies in the Central Nervous System .. 1113
3. Paraquat and Parkinson’s disease—proposed mechanisms 1113
 3.1. Paraquat induces long-lasting dopamine overflow and reduction of dopamine synthesis .. 1113
 3.2. Paraquat inhibits the complex I of the mitochondrial electron transport chain .. 1114
 3.3. Paraquat markedly induces α-synuclein up-regulation and aggregation .. 1114
4. Permeability of blood-brain barrier to paraquat and putative uptake by the dopamine transporter .. 1114

Abbreviations: BBB, blood-brain barrier; CNS, Central Nervous System; DA, dopamine; DOPAC, dihydroxyphenylacetic acid; DTCs, dithiocarbamates; ETC, electron transport chain; GSH, reduced glutathione; GSSG, oxidized glutathione; H₂O₂, hydrogen peroxide; HO•, hydroxyl radical; HVA, homovanillic acid; LBs, Lewy bodies; MAO, monoamine oxidase; MB, maneb; MPP⁺, 1-methyl-4-phenyl-2,3-dihydropyridinium ion; MPPP, 1-methyl-4-phenyl-propion-oxypiperidine; MPTP, 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine; NDA, N-methyl-n-aspartate; NO, nitric oxide; NOS, nitric oxide synthase; O₂⁻, superoxide radical; ONOO⁻, peroxynitrite anion; PD, Parkinson’s disease; PQ, paraquat; RNS, reactive nitrogen species; ROS, reactive oxygen species; SN, substantia nigra; SNpc, substantia nigra pars compacta; TH, tyrosine hydroxylase

* Corresponding authors. Tel.: +351 222078922; fax: +351 222003977.
E-mail addresses: ricardinis@ff.up.pt, ricardinis@sapo.pt (R.J. Dinis-Oliveira), felixdc@ff.up.pt (F. Carvalho).

0161-813X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuro.2006.05.012
1. Introduction

Parkinson’s disease (PD), first described by James Parkinson in 1817, is a chronic progressive neurodegenerative disease, affecting at least 1% of the population over the age of 55 (Rajput, 1992). It is the second most common neurodegenerative disorder after Alzheimer’s disease, with new 5–24 cases per 100,000 population diagnosed every year (Rajput, 1992).

1.1. The pathology of Parkinson’s disease

Fully developed PD comprises motor symptoms such as resting tremor on one or both sides of the body, rigidity, bradykinesia, hypokinesia, and postural reflex impairment (Marsden, 1994). The pathology of PD is not fully understood. In normal brains the number of nigral cells is reduced by 4.7–6% per decade between the fifth and the ninth decade of life (Gibb and Lees, 1991), but this loss is not sufficient to cause PD (McGeer et al., 1977). The common feature of PD is the degeneration of the neural connection between the substantia nigra (SN) and the striatum (Wooten, 1997), two essential brain regions in maintaining normal motor function (Fig. 1). The striatum receives its dopaminergic input from neurons of substantia nigra pars compacta (SNpc) via the nigrostriatal pathway (Moore et al., 1971). Progressive degeneration of the nigrostriatal dopaminergic pathway results in profound striatal dopamine (DA) deficiency (Albin et al., 1989; Crossman, 1989; DeLong, 1990; Greenamyre, 1993; Klockgether and Turski, 1989). By the time that the clinical manifestations of PD are fully developed, a large proportion (80%) of dopaminergic neurons in the SN are already lost, resulting in reduced synthesis and release of DA from the striatal nerve terminals (Lang and Lozano, 1998).

Besides the loss of SN neurons, another important pathological feature of PD is the presence of neuronal cytoplasmatic inclusions known as Lewy bodies (LBs) (Gibb and Lees, 1988; Marsden, 1994) in some surviving nigral dopaminergic neurons. In PD, LBs are present in the dopaminergic neurons of SN, as well as in other brain regions such as the cortex and magnocellular basal forebrain nuclei (Braak et al., 1995). A major component of the LBs is the α-synuclein protein (thioflavin S-positive staining), and LBs seem to derive from α-synuclein aggregation (Spillantini et al., 1997, 1998; Uversky, 2003). However, several other clinical syndromes are also associated with intracellular α-synuclein inclusions (synucleinopathies) (Mukaetova-Ladinska and McKeith, 2006).

1.2. Etiology of Parkinson’s disease

Considerable evidence suggests a multifactorial etiology for PD, involving genetic and environmental factors. The contribution of genetic predisposition to PD has been investigated in twin studies (Piccini et al., 1999), case-control studies (Gasser, 1998, 2001; Sasnajonsdottir et al., 2000), and in studies identifying mutations in genes encoding α-synuclein (Kruger et al., 1998; Polymeropoulos et al., 1997; Zaranz et al., 2004), parkin (Kitada et al., 1998), PINK1 (Valente et al., 2004), dardarin (Hernandez et al., 2005) and DJ-1 (Bonifati et al., 2003).

However, inheritance cannot fully explain all PD cases. In fact, a comprehensive study of over 19,000 white male twins showed that inheritance is not the cause of sporadic PD (Tanner et al., 1999). In addition, α-synuclein is found in all LBs, even in the majority of the idiopathic PD cases without α-synuclein mutations (Spillantini et al., 1997), thus indicating that additional mechanisms may lead to conformational changes and consequent protein aggregation.

Numerous environmental risk factors have been associated with the PD as causative agents, either in the modulation of the...
disease onset and/or on its progression (Di Monte, 2001, 2003; Di Monte et al., 2002; McCormack et al., 2002; Tanner, 1989; Tanner and Ben-Shlomo, 1999). Several environmental agents are known to cause nigrostriatal damage, and may thus contribute to PD, namely: (i) metals (Altschuler, 1999; Good et al., 1992; Gorell et al., 1999; Hellenbrand et al., 1996; Hirsch et al., 1991; Tanner, 1989; Yasui et al., 1992), (ii) solvents (Davis and Adair, 1999; Hageman et al., 1999; Pezzoli et al., 1996; Seidler et al., 1996; Uitti et al., 1994), and (iii) carbon monoxide (Klawans et al., 1982). Additionally, data from epidemiological studies point to an association between increased PD risk and specific environmental factors such as rural residence (Liou et al., 1997; Marder et al., 1998; Morano et al., 1994), farming (Fall et al., 1999; Gorell et al., 1998; Liou et al., 1997; Semchuk et al., 1992), drinking water from wells (Marder et al., 1998; Morano et al., 1994), and exposure to agricultural chemicals, including paraquat (PQ) (Fall et al., 1999; Gorell et al., 1998; Liou et al., 1997; Semchuk et al., 1992, 1993; Vanacore et al., 2002).

Given the public health implications concerning risk factors for the development of PD, the study of the environmental factors involved in the etiology of PD has gained renewed interest of the scientific and medical community as well as of the regulatory governmental agencies. In the present review the recent evidence from epidemiological, clinical, and experimental work linking the widely used herbicide, PQ, to PD pathology is discussed.

2. Paraquat toxicity

2.1. Paraquat toxicity mechanism

The cellular toxicity of PQ is essentially due to its redox cycle (Fig. 2). Paraquat is reduced, mainly by NADPH-cytochrome P-450 reductase (Clejan and Cederbaum, 1989), NADPH-cytochrome c reductase (Fernandez et al., 1995), and the mitochondrial complex I also known as NADH: ubiquinone oxidoreductase (Fukushima et al., 1993; Yamada and Fukushima, 1993), to form a PQ monocation free radical (PQ⁺). It is generally accepted that PQ uses cellular diaphorases, which are a class of enzymes that transfer electrons from NAD(P)H to small molecules, such as PQ (Aziz et al., 1994; Day et al., 1999; Dicker and Cederbaum, 1991; Liochev and Fridovich, 1994). The PQ monocation free radical is then rapidly reoxidized in the presence of oxygen generating the superoxide radical (O₂⁻) (Busch et al., 1998; Dicker and Cederbaum, 1991). This then sets off the well-known cascade of reactions leading to the generation of other reactive oxygen species (ROS), mainly hydrogen peroxide (H₂O₂) and hydroxyl radical (HO•) and the consequent cellular deleterious effects. Indeed, hydroxyl radicals (Busch et al., 1998; Youngman and Elstner, 1981) have been implicated in the initiation of membrane damage by lipid peroxidation during the exposure to PQ in vitro (Busch et al., 1998) and in vivo (Burk et al., 1980; Dicker and Cederbaum, 1991).

Fig. 2. Schematic representation of the mechanism of paraquat toxicity. A, cellular diaphorases; SOD, superoxide dismutase; CAT, catalase; GPX, glutathione peroxidase; Gred, glutathione reductase; PQ²⁺, paraquat; PQ⁺⁺, paraquat cation radical; HMP, hexose monophosphate pathway; FR, Fenton reaction; HWR, Haber-Weiss reaction.
2.2. Recent studies in the Central Nervous System

Studies of PQ toxicity have recently focused on its Central Nervous System (CNS) effects. Unlike the exposure to high levels of PQ that mainly produces pulmonary toxicity, chronic low levels, resulting from prolonged exposure to non-pneumotoxic doses, may produce damage to the basal ganglia and Parkinsonism. Toxic damage to the brain has been observed in patients who died from PQ poisoning (Grant et al., 1980; Hughes, 1988). Autopsy findings in cases of acute PQ poisoning showed cerebral damage with edema, haemorrhage and neural death. However, in these studies, the possibility that the observed tissue changes occurred either post-mortem or as a consequence of anoxia due to respiratory dysfunction could not be excluded.

3. Paraquat and Parkinson’s disease—proposed mechanisms

3.1. Paraquat induces long-lasting dopamine overflow and reduction of dopamine synthesis

The excitotoxicity induced by N-methyl-D-aspartate (NMDA) receptor activation, associated to Ca\(^{2+}\) penetration into the cells by activation of non-NMDA receptors, is a central mechanism of neurodegeneration in several neurological diseases (Dugan and Choi, 1999). There is also increasing evidence that the excitotoxic injury plays a critical role in progressive degeneration of DA neurons in PD (Beal, 1998). In vivo studies on the mechanisms of PQ-induced toxicity in the striatum, indicated that PQ stimulates glutamate efflux initiating excitotoxicity mediated by reactive nitrogen species (RNS). After activation of nitric oxide synthase (NOS) containing neurons, evoked depolarization of NMDA receptor channels and Ca\(^{2+}\) penetration into the cells occur by activation of non-NMDA receptor channels (Shimizu et al., 2003a). It was also shown that the elevation of extracellular glutamate levels was PQ dose-dependent. This phenomenon was observed shortly after PQ administration. However, the mechanism by which PQ induces glutamate efflux is yet to be clarified. The influx of Ca\(^{2+}\) into the cells triggers the mobilization of Ca\(^{2+}\)-dependent intracellular processes including the activation of neuronal NOS. Nitric oxide (NO) produced by NOS diffuses to dopaminergic terminals, where it is thought to play an important role in excitotoxicity, probably through the formation of the peroxynitrite anion (ONOO\(^{-}\)) upon reaction with O\(_2\)\(^{•-}\) produced by the redox-cycle of PQ (Figs. 2 and 3) (LaVoie and Hastings, 1999). Peroxynitrite, which is a lipid-permeable ion with a wider range of chemical targets than NO, can oxidize proteins, lipids, RNA, and DNA. It inhibits the function of manganese superoxide dismutase, which can lead to increased O\(_2\)\(^{•-}\) and ONOO\(^{-}\) formation.
Additionally, ONOO− is an effective inhibitor of enzymes in the mitochondrial respiratory chain, decreasing ATP synthesis. Secondly, ONOO− damages DNA strands and inhibits DNA ligase, which increases DNA strand breaks (Ebadi and Sharma, 2003). Noteworthy, long-lasting DA release (Shimizu et al., 2003a) and consequent death of the dopaminergic neurons was prevented by treatment with glutamate receptor antagonists, by a NOS inhibitor and by the monoamine oxidase inhibitor l-depenryl, strongly suggesting that chronic exposure to low PQ doses leads to an increased vulnerability of dopaminergic neurons in the nigrostriatal DA system via the excitotoxic pathway (Shimizu et al., 2003b). A study in PC12 cells showed that the rate-limiting enzyme in DA synthesis, tyrosine hydroxylase (TH), is a selective target for nitration following exposure to ONOO− (Ara et al., 1998). Nitration of tyrosine residues in TH results in loss of enzymatic activity (Ara et al., 1998). In the mouse striatum, tyrosine nitration-mediated loss of TH activity parallels the decline in DA levels (Ara et al., 1998). These results indicate that tyrosine nitration induces TH inactivation and consequent DA synthesis impairment. Thus, glutamate-induced RNS-mediated cytotoxicity plays an important role in the toxic effect of PQ on dopaminergic terminals.

3.2. Paraquat inhibits the complex I of the mitochondrial electron transport chain

The mitochondrial complex I (located in the inner mitochondrial membrane and protruded into the matrix) is the first and the most complex of the three energy-transducing enzyme complexes of the mitochondrial electron transport chain (ETC). It is the point of entry for the major fraction of electrons that cross the respiratory chain. As a component of the ETC, complex I oxidizes NADH to NAD+ and transfers electrons that cross the respiratory chain (ETC). It is the point of entry for the major fraction of enzyme complexes of the mitochondrial electron transport chain (ETC). It is the point of entry for the major fraction of

Severe defects in complex I activity depress ATP synthesis, induce mitochondria depolarization, and favor Ca2+ deregulation. The combination of all these factors may cause the early onset and rapid progression of neurological diseases such as PD. On the other hand, subtle abnormalities of complex I might produce milder, late-onset disorders (Greenamyre et al., 2001). Supporting this hypothesis, non-familiar sporadic PD has been characterized by a 15–30% reduction of complex I activity (Schapira et al., 1990).

Importantly, dopaminergic neurons are particularly vulnerable to complex I inhibitors. Complex I activities in rat brain, lung and liver have all been shown to decrease with time, with a significant effect observed 2 h after PQ administration. It was therefore concluded that PQ decreases the mitochondrial complex I activity of the brain at an early stage after PQ exposure, even before respiratory dysfunction is observed (Tawara et al., 1996).

3.3. Paraquat markedly induces α-synuclein up-regulation and aggregation

The abundant presynaptic protein α-synuclein plays an important role in the formation of LBs inclusions involved in the pathogenesis of PD (Masliah et al., 2000). It has been hypothesized that pathological changes may arise from interactions of α-synuclein with toxic agents, a likely mechanism through which environmental risk factors could contribute to the pathogenesis of PD. Supporting this hypothesis, the in vitro incubation of recombinant α-synuclein in the presence of PQ resulted in increased protein fibrillation (Uversky et al., 2001, 2002) with clear concentration-dependent accelerating effects (Manning-Bog et al., 2002), probably due to the preferential binding of PQ to a partially folded α-synuclein intermediate. Accordingly, following in vivo PQ administration, α-synuclein-containing aggregates were observed in the rodent SN (Manning-Bog et al., 2002). This up-regulation followed a consistent pattern, with higher α-synuclein levels attained 2 days after each of three weekly PQ injections and with protein levels returning to control values by day 7 after PQ administration (Manning-Bog et al., 2002). The up-regulation of α-synuclein as a consequence of toxicant insult and the direct interaction between the protein and environmental agents are potential mechanisms leading to α-synuclein pathology in neurodegenerative disorders (Manning-Bog et al., 2002).

4. Permeability of blood-brain barrier to paraquat and putative uptake by the dopamine transporter

Another important feature of PQ toxicity is related to its ability to permeate the blood-brain barrier (BBB) into the CNS. Paraquat is a charged molecule, with a hydrophilic structure, low partition coefficient and does not readily cross membranes. Thus, it is unlikely that the passive entry of PQ across the BBB leads to a significant accumulation of the compound in the brain. In accordance, it was previously shown that the structurally related dopaminergic neurotoxin 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPP+) must be formed
intracerebrally by monoamine oxidase (MAO)-B in glia or non-
dopaminergic neurons, since it cannot cross the BBB (Shimizu
et al., 2001). Nevertheless, PQ does cross the BBB, with
maximal brain levels evident after 24 h, as compared with 30
min in other tissues, following subcutaneous administration
(Widdowson et al., 1996). In fact, PQ could be measured in the
30 min in other tissues, following subcutaneous administration
maximal brain levels evident after 24 h, as compared with
BBB (Shin et al., 1985). Recent studies suggest the involvement
of an active uptake system, the BBB neutral amino acid
transporter, in the transport of PQ into the CNS (McCormack
and Di Monte, 2003; Shimizu et al., 2001), to the detriment of a
possible dysfunction of BBB caused by PQ itself or by PQ**.
Brain accumulation and neurotoxicity of PQ in the mouse
model was completely prevented by co-administration of
simple amino acids, such as l-valine and l-phenylalanine, or
levodopa, which are competitive substrates for the same BBB
transporter (McCormack and Di Monte, 2003). Taken together,
these findings suggest that active uptake across the BBB may be
essential in the sequence of events that leads to toxin-induced
nigrostriatal damage. Intake of specific dietary elements (e.g.,
amino acids) or therapeutic agents (e.g., levodopa) may also
significantly modulate the effects of environmental xenobiotics
such as PQ, by changing their rate of uptake into the brain.

Several studies have been performed to explain how PQ is
taken into striatal cells. Similarly to the polyamine uptake
system in the lung (Dinis-Oliveira et al., 2006b), this uptake
seems to be sodium dependent (Shimizu et al., 2001). It was
reported that PQ is rapidly taken up by nerve terminals isolated
from mouse cerebral cortex, where it induces lipid peroxidation
in a concentration-dependent manner in the presence of
NAD(P)H and ferrous iron (Yang and Sun, 1998). Importantly,
PQ also, in a concentration-dependent manner, reduces the
number of dopaminergic neurons in cultured rat organotypic
midbrain slices (Shimizu et al., 2003b). Since this damage is
prevented by GBR-12909 (a selective inhibitor of DA
transport), the involvement of the DA transporter in the PQ
uptake into the striatal cells has been proposed. However, the
transport of PQ through the DA transporter remains a
controversial issue (Barlow et al., 2003).

5. The inherent susceptibility of dopaminergic neurons
contributes to the paraquat-induced damage

Comparing to other neuronal cell types, dopaminergic cells
are much more sensitive to oxidative injury due to the
participation of DA in harmful oxidative reactions (Fitsanakis
et al., 2002; Graham, 1978). The activity of MAO, which is
involved in DA metabolism, produces H2O2 as a normal
byproduct. Moreover, autoxidation of DA results in the
formation of ROS (Lotharius and O'Malley, 2000). Never-
theless, the toxicological implications of the inherent vulner-
ability of the nigrostriatal DA system are still not fully
understood. One critical feature of the mammalian SN in PD
that may contribute to its susceptibility to ROS injury is the
depletion of reduced glutathione (GSH) with no change in
oxidized glutathione (GSSG) (Sian et al., 1994a). This appears
to be due to the efflux of GSH mainly out of the glia promoted
by γ-glutamyltranspeptidase, with a possible additional
increased conversion of GSH to GSSG (which is itself
transported out of the cells by γ-glutamyltranspeptidase), in
response to increased intracellular levels of H2O2 (Sian et al.,
1994b). Whether the lower level of GSH is a cause or a
consequence of the pathogenic sequence leading to PD remains
to be determined. Although speculative, the hypothesis that
chronic low level PQ-induced redox cycling within the SN
dopaminergic system may exceed the oxidative defenses of
these cells and thus produce deleterious intracellular events,
including the activation of the apoptotic cascade, remains a
likely explanation for the association between PQ and PD.

6. Epidemiological studies

A study performed with 120 patients in Taiwan, where the
herbicide PQ is commonly sprayed over rice fields, showed a
strong association between PQ exposure and PD risk. The
hazard increased by more than six times in individuals who had
been exposed to PQ for more than 20 years (Liou et al., 1997).
These observations were consistent with a dose-dependent
effect and increased with duration of pesticide use in
agricultural workers (Liou et al., 1997; Petrovitch et al.,
2002). Occupational PQ exposure in other 57 cases also showed
association with Parkinsonism in British Columbia (Hertzman
et al., 1990). A door-to-door survey conducted in Taiwan to
estimate the PD prevalence and incidence, indicated that the
environmental factors may be more important than racial
factors in the pathogenesis of PD (Chen et al., 2001). In a
population-based case-control study in Calgary previous
occupational herbicide use was the only significant predictor of
PD risk after multivariate statistical analysis (Semchuk et al.,
1992). Seidler et al. (1996) reported a significant association
between PD and pesticide use but not between PD and other
rural factors in Germany.

When considering environmental pesticide exposure, con-
cern must be raised upon the effects of prolonged exposure to
low levels of compounds, combination of agrochemicals, and
the subtle cellular disruptions that may enhance the risk for
developing major dysfunctions or disease. For example, the
combined exposure to PQ and maneb (MB) targets the
nigrostriatal DA system and induces locomotor impairment
suggesting that this combination may be considered as a
potential environmental risk factor for Parkinsonism (Thir-
uchelvam et al., 2000a,b, 2002).

7. Paraquat as a tool for animal models of Parkinson’s
disease

Animal models are an invaluable tool for studying the
pathogenesis and therapeutic intervention strategies of human
disease, including PD and in particular, toxicant-induced
Parkinsonism. Since PD does not develop spontaneously in animals, characteristic functional changes have to be mimicked by neurotoxic agents. Although an ideal model should reproduce the characteristic clinical and pathological features of PD (i.e., animals should develop progressive loss of dopaminergic neurons, show deposition of LB-like inclusions in the brain and some features of l-dopa-responsive movement disorder), up to now, no animal model was able to entirely reproduce all the features of the human disease. Albeit, these models are vital in the dissection of the many different molecular and biochemical pathways that are combined in the final clinical and pathological manifestations of PD (Orth and Tabrizi, 2003).

Presently, the MPTP model represents the best characterized PD animal model because it fulfills many of the criteria for the ideal model of this disease. The development of this model was based on the accidental discovery in the early 1980s, when a Parkinsonian syndrome in young drug addicts was linked to their unintentional MPTP intravenous self-administration when injecting 1-methyl-4-phenyl-propion-oxypiperedine (MPPP), also known as “synthetic heroin”, that was contaminated with MPTP (Davis et al., 1979; Langston and Ballard, 1983). Subsequent work revealed that MPTP is not toxic on its own, but that it easily enters the brain where it is metabolized in the astrocytes by MAO-B into the active toxin MPP+. This neurotoxin displaces DA from intracellular vesicles into the cytoplasm where auto-oxidation occurs leading to cellular damage (Lotharius and O’Malley, 2000). MPP+ is selectively transported into the dopaminergic neurons through the DA transporter, accumulates in mitochondria and inhibits complex I (Greenamyre et al., 2001), thus acting as a selective complex I mitochondrial ETC toxicant that produces a Parkinsonian syndrome similar to the idiopathic PD in humans (Langston, 1996). In spite of the similarity between MPTP-induced PD in a number of species (mice, cats, and primates) and the sporadic PD in humans with respect to nigrostriatal dopaminergic degeneration and the characteristic behavioural changes (MPTP causes tremor, rigidity, akinesia, and postural instability, which are all successfully treated with l-dopa and DA agonists), some of the characteristic features of the disease differ, such as the lack of pronounced LB-related pathology (Forno et al., 1986; Langston et al., 1999). These differences suggest that the full complement of clinical (motor and cognitive) and pathological (nigrostriatal and extra-nigrostriatal) features of PD is unlikely to be mimicked by a single toxic insult but would rather involve multifactorial events, such as exposure to multiple toxicants, genetic factors, gene–toxicants interactions, and age-related effects.

The unfortunate accident linking MPTP exposure and PD provided a new insight into the possibility of interaction between other environmental agents and PD (Langston and Ballard, 1984; Tanner and Ben-Shlomo, 1999). If MPTP is capable of inducing neurochemical, pathological, and clinical features that resemble those of idiopathic PD (Di Monte et al., 2002), similar effects might be caused by other neurotoxins.

Shortly after the discovery of the neurotoxicity of MPTP, the potential involvement of pesticides in PD pathology became obvious. Due to the close structural similarity between MPP+ and PQ (Fig. 4), this widely used non-selective contact herbicide emerged as a putative risk factor of PD (Di Monte et al., 1986). Ironically, in the 1960s, MPP+ itself had been tested as an herbicide under the commercial name of cyperquat (Di Monte, 2001). Several studies show that the exposure of mice to PQ may be a suitable experimental model to study the mechanisms involved in PD (Brooks et al., 1999; McCormack et al., 2002). However, as a candidate SN toxicant, PQ systemic delivery must produce the loss of SN dopaminergic neurons and the subsequent neurobehavioral syndrome with depletion of DA terminals within the striatum. Initial attempts to establish convincing evidence for the direct link between PQ exposure and PD failed. The first studies showed that striatal DA levels did not decrease after the systemic administration of PQ to animal models (Perry et al., 1986). Recently, this conclusion has been re-evaluated by using a stereological technique to count dopaminergic neurons in the SN of mice (McCormack et al., 2002). The authors found that systemic subchronic exposure to PQ induces dopaminergic neurons cell death in SNpc, as evaluated by the stereological counting of TH-immunoreactive and Nissl-stained neurons, without significant depletion of striatal DA. Furthermore, other investigators showed that PQ induced a neurobehavioral syndrome characterized by reduced ambulatory activity (Brooks et al., 1999), thus fulfilling the basic criteria for a neurotoxicant-induced model of PD (Brooks et al., 1999; McCormack et al., 2002). Given the propensity of PQ to stimulate lipid peroxidation, Brooks et al. (1999) proposed that the oxidative stress events due to the increased production of ROS might be the underlying mechanism responsible for SN toxicity. In spite of nigral degeneration (about 20–30% of neurons were lost), this effect was not accompanied by a significant DA depletion.
or behavioural changes, a feature that distinguishes this model from the MPTP and rotenone models (McCormack et al., 2002). Thus, toxicant exposure may decrease the number of nigral neurons without triggering acute or major functional consequences. Whether the effects of PQ (e.g., DA depletion) become evident and progress over time or whether PQ-induced injury predisposes to damage from subsequent toxicant exposure remains to be determined.

Furthermore, exposure of mice to PQ also led to the formation of intraneuronal aggregates that were evidenced by anti-α-synuclein antibodies and thioflavin S staining (a dye that binds to amyloid fibrils) (Manning-Bog et al., 2002), another extremely important PD feature.

8. Two insults are more effective than one: paraquat + maneb

The hypothesis that a combination of environmental risk factors may result in more severe nigrostriatal injury is supported by several lines of experimental evidence. These observations are of special interest, since humans are likely to be exposed to a complex mixture of chemical agents in their residential and occupational environments. PQ is a member of only one class of agricultural chemicals known to have adverse effects in the nigrostriatal DA system. Complex mixtures of several pesticides are often used in overlapping geographical areas. Such is the case of the simultaneous use of PQ and diethyldithiocarbamates like the manganese ethylenebisdithiocarbamate [maneb (MB), a dithiocarbamate (DTC) fungicide] (Thiruchelvam et al., 2000a,b). In the US, the heavy use of these chemicals along the Pacific Coast, in the Northeast, the Plains states, the mid-Atlantic, the Southeast states, and also Texas, where these pesticides are used either separately or combined on the same crops (e.g., tomatoes), may be important for the etiological basis of PD (Thiruchelvam et al., 2000a). The extensive geographical overlap of the PQ + MB applications and PD prevalence suggests a possible correlation. This possibility has been corroborated by animal studies. In fact, the co-treatment of mice with PQ and MB resulted in potentiated neurotoxicity (Thiruchelvam et al., 2000a,b). The observed effects were, moreover, highly selective and irreversible for the nigrostriatal DA system, causing a reduction in motor activity and increased damage of both striatal terminals and nigral cell bodies. Additionally, it was shown that MB and other DTCs are able to alter the biodisposition of DA and PQ, resulting in a prolonged exposure to these ROS and RNS generating compounds (Barlow et al., 2003, 2005). Barlow et al. (2003, 2005) showed, in striatal synaptosomal vesicles, that some DTCs elicit an increase in DA accumulation, without altering its influx, but rather delaying the efflux out of the synaptosomes. The same DTCs also increased the lung and brain tissue content of [14C]PQ in vivo. Thus, certain DTCs and other agents are capable of converting a non-toxic dose of PQ and other xenobiotics into a toxic dose through alterations in toxicokinetics (Thiruchelvam et al., 2000b). A common mechanism whereby selective DTCs might alter the kinetics of both [3H]DA in vitro in synaptosomes and [14C]PQ and DA in vivo seems to be via direct inhibition of an efflux transporter that transports both compounds out of the cells (Barlow et al., 2003, 2005). Direct action of some DTCs on the protein involved in this transport seems likely, given the rapid nature of the effect, as opposed to a slower mechanism such as altered transcription or translation. However, the identity of this efflux transporter is yet unknown. Efflux transporters are common in humans and other species, have wide tissue expression, and diverse substrates (Taylor, 2002). There are three large families of efflux transporters present in the brain and other organs (Taylor, 2002), each having several members: the multidrug resistance transporters (Ambudkar et al., 1999; Holland and Blight, 1999; Leslie et al., 2001), the monocarboxylic acid transporters and the organic ion transporters. Recently, we demonstrated that the induction of the synthesis de novo of membrane P-glycoprotein by dexamethasone decreases PQ lung accumulation and consequently its toxicity (Dinis-Oliveira et al., 2006a). On the other hand, verapamil, a competitive inhibitor of this transporter (Stein, 1997), when given 1 h before dexamethasone blocked these protective effects, causing an increase of PQ lung concentration and an aggravation in toxicity (Dinis-Oliveira et al., 2006a). In the light of our results, we hypothesize that this efflux impairment could similarly be a consequence of P-glycoprotein inhibition by some DTCs. Other interesting families of efflux transporters are the organic cation transporter family (OCT1–3) and the organic cation/carnitine family (OCTN1–3). Several transporters in these families have been shown to efflux DA, MPTP and MPP+, and to be expressed in neurons (Busch et al., 1998; Wu et al., 1998; Zhang et al., 1997). Also, the fact that PQ is not metabolized in vivo suggests that it must be removed from cells by an active transport process.

Given the extreme importance of coexposure in epidemiological and toxicological studies of PD in human populations (Thiruchelvam et al., 2000a,b), the interactions of toxic chemicals are valuable models for the study of the potential mechanisms by which environmental exposures can cause PD. In such models, exposure to a single chemical may be insufficient to induce major effects, whereas multiple concurrent exposures, may preclude homeostatic deregulation with ensuing neuropathological changes by provoking changes at multiple target sites of the nigrostriatal DA system (Thiruchelvam et al., 2000a,b).

Accordingly, a model of PD in young adult C57BL/6 mice based on combined exposure to these pesticides was recently developed (Thiruchelvam et al., 2000a,b). To this end, C57BL/6 mice were injected intraperitoneally with either PQ at a dose of 5 or 10 mg/kg or MB at a dose of 15 or 30 mg/kg alone or in combination once a week for 4 weeks (Thiruchelvam et al., 2000a,b). Only the combined exposure to both chemicals produced a sustained decrease in motor activity immediately after the injections. Under the same conditions, the levels of DA and its metabolites [dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)] and the efficiency of DA turnover (DOPAC/DA) were shown to increase immediately after injection. Furthermore, the reductions in TH immunoreactivity (i.e., the decrease in the number of DA neurons), measured 3
days after the last injection, were clearly observed only in animals with combined PQ + MB exposure. Finally, the exposure of mice to PQ + MB significantly reduced their locomotor activity (Thiruchelvam et al., 2000a,b). The finding that combined PQ + MB exposure targets the nigrostriatal DA system and induces locomotor impairment suggests that this combination may be considered as potential environmental risk factor for Parkinsonism (Thiruchelvam et al., 2000a,b). Additionally, studies using the PQ + MB model have shown a greater vulnerability of males to the combined treatment, which is consistent with observations from epidemiologic studies of PD (Wooten et al., 2004). These studies suggest that the greater incidence of the disease in males observed in epidemiologic studies may not only be due to a greater exposure to environmental risk factors such as pesticides but may also be related to gender-based physiologic differences. Other studies also indicate that both aging (Thiruchelvam et al., 2003) and overexpression of mutant human α-synuclein (Thiruchelvam et al., 2004) enhance the PD phenotype produced by PQ + MB. To investigate the influence of ageing the effects of PQ (10 mg/kg) and MB (30 mg/kg) alone and in combination were examined in C57BL/6 mice aged 6 weeks, 5 or 18 months old, and were evaluated 2 weeks and 3 months post-treatment (Thiruchelvam et al., 2003). The findings clearly demonstrated an age-related enhancement of sensitivity to combined PQ + MB. Additionally, some of the observed effects were not only permanent but also increased in magnitude over time. The first indication that ageing enhanced vulnerability was that the total number of treatments had to be abbreviated. Thiruchelvam et al. (2000a,b) in their initial study using 6-week-old mice, administered 12 PQ + MB treatments, while with the aged mice it was necessary to stop at six injections, since the 18 month PQ + MB treated mice did not recover the locomotor activity 24 h post-treatment (Thiruchelvam et al., 2003), an outcome that has been shown to accurately predict underlying dopaminergic changes, particularly dopaminergic cell loss (Thiruchelvam et al., 2000a,b). Both 5- and 18-month-old mice showed decreased DA 2 weeks after the last PQ + MB treatment that was still evident 3 months after the final treatment. For the 5- and 18-month-old mice groups, progressive reductions in the levels of DA metabolites and DA turnover (DOPAC/DA), between the second week and third month after treatment were most pronounced in the 18-month-old mice group injected with PQ + MB.

To evaluate the effect of the combined exposure to PQ + MB on the overexpression of mutant human α-synuclein, transgenic male mice expressing human wild-type α-synuclein (line hwo-SYN-5) and human doubly-mutated α-synuclein (A53T and A30P; line hwo-2α-SYN-39) (6–7 months of age) were treated twice a week for 7 weeks, with a saline vehicle or combined PQ (5 mg/kg) + MB (15 mg/kg). Ten days after the last treatment, only the mice expressing the human doubly-mutated α-synuclein line exposed to combined PQ + MB showed a persistent reduction in locomotor activity (~70% decrease) compared to the saline treatment (Thiruchelvam et al., 2004).

Thus, combined PQ + MB exposure may be a valuable tool for inducing PD, since it showed to induce selective, age-related, progressive and irreversible nigrostriatal dopaminergic system neurotoxicity (Thiruchelvam et al., 2003).

9. Concluding remarks

A number of clinical and experimental studies have increased the interest in the possibility that environmental chemicals, including PQ, may be related to the development of PD (Brooks et al., 1999; Corasaniti et al., 1998; Liou et al., 1996). PQ seems to be one of the most eligible herbicides that may contribute for the development of PD, given that the incidence and development of the disease and the extent of PQ exposure strongly correlate. (Brooks et al., 1999; Corasaniti et al., 1998; Liou et al., 1996, 1997; Morano et al., 1994). Furthermore, PQ administered systematically to experimental animals induces behavioural and biochemical changes that are compatible with PD symptoms, such as increased rigidity, akinesia, tremor and decreased DA concentration (Brooks et al., 1999; Lindquist et al., 1988). Since many human disorders do not arise spontaneously in animals, characteristic functional changes have to be mimicked by neurotoxic agents, and thus PQ can provide a good model to induce PD symptoms in experimental animals for the study of the pathogenesis and therapeutic intervention strategies in this neurodegenerative disease.

Despite the suggestive results of epidemiological investigations, some of the data are equivocal and more detailed information about the association between PQ exposure and risk for PD is needed (Koller, 1986). Inconsistencies between the results of different studies could be explained, at least partially, by the lack of biological markers for PD and the consequent variability in case definition and diagnostic accuracy. The development of such biomarkers of disease predisposition, occurrence, and progression in vivo (in contrast to studies of biomarkers in post-mortem brain specimens) is therefore critical in PD research. In the future, collection of more precise data about PQ use should ideally be corroborated by direct-exposure assessments. The effects of PQ exposure may also vary due to genetic differences among individuals. For example, the lack of significant DA depletion, even in the presence of significant nigral cell loss, and the increase in TH activity caused by PQ suggest that toxicant-induced nigrostriatal injury may remain relatively “silent” (McCormack et al., 2002). Several explanations may account for the lack of significant DA depletion after PQ treatment, including the possibility that, in contrast to other toxicants, this herbicide may preferentially target the dopaminergic cell bodies rather than its terminals or could be the result of compensatory mechanisms through which enhanced DA synthesis counteracts the effects of terminal damage and restore the tissue levels of the neurotransmitter (McCormack et al., 2002). The contribution of additional environmental and/or genetic risk factors may also be required for this “subclinical” toxic insult to develop into a complete pathological, neurochemical, and behavioural syndrome.

Further studies on the association between PQ and PD should include assessment of PQ exposure in humans and
testing of long-term effects in animal models. Also, the recurrent association of dopaminergic cell injury with specific mechanisms of neurotoxicity suggests that putative risk factors may be screened on the basis of their effects on mitochondrial complex I activity, ROS production, and α-synuclein aggregation. Moreover, it is also clear that interactive mechanisms, such as additive/synergistic/potentiation, probably underlie the effects of environmental agents on the pathogenesis of PD. The study of these complex events in human populations and the development of animal models of such toxic interactions is challenging and essential to the elucidation of the etiology of PD.

Finally, as stated by Di Monte (2003) it is important to emphasize a multidisciplinary approach for future investigations on the role of PD environmental risk factors. A cross-linked validation of clinical, epidemiological, and experimental evidence should lead to the formulation of tenable pathogenetic hypotheses, the identification of specific risk factors, and the design of effective preventive strategies. Although the effect of PQ exposure on the development of PD is still not comprehensively explained, supporting evidence is accumulating that this widely used herbicide can penetrate the CNS, producing lethal injury to SNpc neurons and a consequent neurobehavioral syndrome. The future investigations in this field can have dramatic implications in public health, as they may help in PD prevention via the elimination or reduction of specific exposure risk factors.

Acknowledgement

Ricardo Dinis, acknowledges FCT for his PhD grant (SFRH/BD/13707/2003).

References

Beckman JS, Beckman TW, Chen I, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:1620–4.

Davis LE, Adair JC. Parkinsonism from methanol poisoning: benefit from treatment with anti-Parkinson drugs. Mov Disord 1999;14:520–2.

Leslie EM, Deely RG, Cole SP. Toxicological relevance of the multidrug resistance protein 1 (MRP1) and related transporters. Toxicology 2001;167:3–23.

Stein WD. Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol Rev 1997;77:545–90.

Thakar JH, Hassan MN. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver. Life Sci 1988;43:143–9.

